微分方程的通解公式(一阶微分方程通解公式)
2022-08-27 14:46:07
摘要: 微分方程的通解公式(一阶微分方程通解公式)...
不是所有题都要写上下限,但所有题都可写上下限。实际上公式:y'+Py=Q之通解为 y=[e^(-∫Pdx)]{∫Q[e^(∫Pdx)]dx+C} 中要求每一个不定积分都要算出具体的原函数且不再加C。而本题∫Pdx=ax,但 ∫Q[e^(ax)]dx=∫f(x)[e^(ax)]dx中,因为有抽象函数f(x)无法算出具体的原函数,所以要用不定积分与变限积分的公式: ∫f(x)dx=∫[a→x]f(t)dt+C(所以每个题都可写上下限。本题用此公式取上式的a=0,C换为C1,(当然被积函数也要换成本题的被积函数),代入公式后C1+C换为C2再换为C。这样才能代入初始条件y(0)=0,求出C。